hoe kan je het gemiddelde berekenen met verschillende wegingen?

Stel je hebt 6,8 met een weging van 0,5
4.2 met een weging van 0.5
7 '' 0.3
6.3 '' 0.5
4 '' 1
hoe bereken je dan het gemiddelde?

Weet jij het antwoord?

/2500

Het beste antwoord

Het totaal van de ‘gewogen getallen’ (= producten van het getal en de weging) delen door het totaal van de wegingen. Dus : ( 6,8 * 0,5) + (4.2 * 0.5) + (7 * 0.3) +( 6.3 * 0.5) + (4 * 1) / (0,5+0,5+0,3+0,5+1) .. ik kom op ongeveer 5,27 uit, als ik geen (reken)foutje heb gemaakt.

de waarden vermenigvuldigen met de wegingen, dat bij elkaar optellen. alle wegingen optellen. en het andwoord van de eerste berekening delen door je andwoord van de 2e berekening. succes

Je wilt een gemiddelde berekenen, maar je hebt te maken met verschillende wegingen. Wat te doen? Eerst maar eens een gemiddelde berekenen waarbij alle wegingen hetzelfde zijn. vb: 5,3,7, 4 en 6 hebben allemaal een weging van 1. Dan is het gemiddelde (5 + 3 + 7 + 4 +6)/5 = 25/5= 5 vb: 5,3,7, 4 en 6 hebben allemaal een weging van 2. (Dan telt elk getal 2 x mee.) (5 + 5 + 3 + 3 + 7 + 7 + 4 + 4 + 6 + 6)/ 10 = 50/10 = 5 (5 x 2 + 3 x 2 + 7 x 2 + 4 x 2 + 6 x 2 )/10 = 50/10 = 5 Nu gaan we over naar jouw probleem. Zoals je zonet al zag bij vb2. tel je het getal zo vaak op als de weging geldt of het getal keer de weging doen. vb: 6.8 met weging 0.5; 4.2 met weging 0.5; 7 met weging 0.3; 6.3 met weging 0.5; 4 met weging 1. Dan moet je als volgt doen in het algemeen: (getal1 x weging 1 + getal2 x weging2 + getal3 x weging3 + getal4 x weging4 + getal5 x weging5)/ (weging1 + weging2 + weging3 + weging4 + weging5) (6.8 x 0.5 + 4.2 x 0.5 + 7 x 0.3 + 6.3 x 0.5 + 4 x 1)/ ( 0.5+ 0.5 + 0.3 + 0.5 + 1)= 14.75 / 2.8 = 5.3

Dat klopt niet helemaal, want je deelt en vermenigvuldigd eerst en telt daarna pas op. De juiste rekensom is dus: (6,8x0,5 + 4,2x0,5 + 7x0,3 + 6,3x0,5 + 4x1) / (0,5+0,5+0,3+0,5+0,5+1) = 5, 27.

Stel zelf een vraag

Ben je op zoek naar het antwoord die ene vraag die je misschien al tijden achtervolgt?

/100