Waarom gebruiken ze bij de wet van snellius niet de hoek van inval en breking maar de sinus hiervan?

Weet jij het antwoord?

/2500

Je kunt de wet opvatten als een manifestatie van het kortste tijdspad, (Principe van Fermat) andere langere tijdpaden doven elkaar uit, daarom Je moet dan een som van twee hypotenuses minimaliseren. Op die manier kom je uit bij de sinussen van de hoeken, die de gelijke verhouding hebben als de brekingsindices. Het kortste tijdspad kun je zien als een auto in de woestijn die een bepaald punt wil bereiken, hij kan een stuk in een zoutwoestijn rijden en een stuk in een zandwoestijn. Hij zal dan proberen de kortst durende route afleggen een lang gedeelte in de zoutwoestijn en een kort gedeelte in de zandwoestijn. Bijzonder is dat lichtstralen daar altijd de juiste inschatting in maken, het is een voorbeeld van non lokaliteit in de quantummechanica. Dat was ook het grootste bezwaar tegen Fermats principe in de fysica. In de bron wordt Snell's wet duidelijk afgeleid met het principe van de kortste tijd, met plaatjes en dergelijke. Je kunt de wet van Snell overigens ook afleiden als golfverschijnsel, uitgaande van golffronten volgens Huygens. De golflengtes worden korter in een materiaal waar het licht langzamer doorheen gaat. (tweede bron). Toegevoegd na 31 minuten: Oorspronkelijk is de wet van Snellius gewoon een wet die helemaal met de waarnemingen overeen bleek te komen (een eerdere wet, die van Ptolemaeus gebruikte alleen de hoeken en werkte dus nog redelijk bij kleine hoeken van inval, omdat de sinus dan praktisch hetzelfde is als de hoek zelf). De benaderingen van Huygens en Fermat zijn meer een verklarend model. Het eerste correcte model is overigens van de Pers Ibn Sahl, en komt op hetzelfde neer als de wet van Snellius, via een geometrische afleiding.

De wet van Snellius geeft heel mooi de verspringing weer die een lichtstraal ondergaat die door een materie heengaat die (bijvoorbeeld) een hogere optische dichtheid heeft dan bv. lucht. De ringen geven eigenlijk de optische dichtheid van de stof aan en daarmee de vertraging van de fotonen in de dichtere stof en de versnelling daar buiten wat de verspringing laat zien. De hoek van breking/verspringing wordt JUIST wel in de geometrische structuur weergegeven. Omdat het een tekening is is de constructie wat moeilijk zeer correct uit te voeren en is de brekingindex bij benadering via deze methode vast te stellen, het vergroot echter aanschouwelijk het inzicht en daar zit de grootste kracht van deze wet in. Het leuke is dat als je er mee gewerkt hebt , deze constructie heel lang blijft hangen, een verschijnsel wat praktische benaderingen vaker voor hebben op theoretische.... Toegevoegd na 2 dagen: Met ringen bedoel ik de cirkels die je trekt met een gegeven diameter verhouding welke de brekingindex aangeeft.

Stel zelf een vraag

Ben je op zoek naar het antwoord die ene vraag die je misschien al tijden achtervolgt?

/100