Ik ben in mijn vrije tijd mijn wiskundevaardigheden aan het bijwerken en kwam deze vraag tegen in een oud ingangsexamen. Ik zou graag de redenering erachter begrijpen, deze valt namelijk niet op te lossen met de "standaard oplossingsmethodes" voor logaritmische vergelijkingen.
Dank bij voorbaat.
Toegevoegd na 2 uur:
Ik heb het uiteindelijk gevonden met volgende werkwijze.
Ik heb mijn opgave herschreven als 3*3(log(2, 1/x)) - 3^(log(2, 4x^2)) + 3^(log(2, 8x^3)) = 11. Maar 3*3(log(2, 1/x)) = 3/3^(log(2, x)). Daarna heb ik alles met 3/3^(log(2, x)) vermenigvuldigd en 3^(log(2, x) vooropgezet. Daarna valt alles terug te brengen tot de derdegraadsvergelijking 18z^3-11z+3=0 met z = 3^(log(2, x). Deze derdegraadsvergelijking heeft maar 1 nulpunt: z = 1/3. Vullen we dit nu in dan moet 1/3 = 3^(log(2, x)) en dit geldt slechts als x = 0.5.
Ben je op zoek naar het antwoord op die ene vraag die je misschien al tijden achtervolgt?