hoe herleid je een macht in een macht?

in mijn voorbeeld gaat het om : 0,999^((1,085)^x-1)
wie zo slim is en ook meteen de afgeleide van bovenstaande weet? (die heb ik namelijk nodig)

Toegevoegd na 1 minuut:
mijn voorbeeld: 0,999^((1,085^x)-1); het eerste was dus fout

Weet jij het antwoord?

/2500

Het beste antwoord

Wat bedoel je precies met herleiden? Je kan het nog wel anders schrijven, maar echt eenvoudiger schrijven gaat niet meer lukken - dus misschien laat je het best zo staan. Voor de afgeleide moet je opletten met de kettingregel. De basisregel voor de afgeleide van een exponentiële functie is de volgende (ik noteer een accent voor de afgeleide): (a^x)' = a^x * ln(a) Als er in de exponent niet gewoon x staat, maar een functie van x die ik even algemeen g(x) noteer, dan moet je de kettingregel gebruiken; er geldt dan: (a^g(x))' = a^g(x) * ln(a) * g'(x) Die laatste factor g'(x) is afkomstig van de kettingregel. In jouw geval is die g(x) van de vorm b^x-1, waarvoor de afgeleide opnieuw met die eerste regel gevonden wordt: g(x) = b^x-1, dan g'(x) = b^x * ln(b) Alles samenrapen voor de afgeleide van a^(b^x-1): [a^(b^x-1)]' = a^(b^x-1) * ln(a) * b^x * ln(b) Nu moet je enkel nog a vervangen door 0,999 en b door 1,085 en je hebt de afgeleide voor jouw functie. Reageer maar als het niet helemaal duidelijk is.

volgens mij is de afgeleide 1,083915^0,085 de x valt weg, dat wordt 1 dus valt ook weg. Er geld als f(x) = a^n dan is f’(x) n * a^n-1 -1 valt ook weg want er geld g(x) = a dan is g’(x) = 0

Ik weet niet precies wat je bedoelt. Mogelijk gaat het om de vergelijking 0,999^(1,085^x) = 1. Als dat zo is moet je het volgende lezen. Bij de oplossing kun je gebruik maken van logaritmes en wel (hier) in 2 stappen. [je weet nog wel: als a^b = r dan is log(r) / log(a) = b en dat log(10) = 1] Noem 1,085^x voorlopig b. Je krijgt dan 0,999^b = 1. Herschrijf dit in:log(10) / log(0,999) = b en 1,085^x = b dus: log(b) / log(1,085) = x..... dus de herleiding gaat in 1, 2 of meerdere logaritmische stappen. (Wel een naar voorbeeld, want log(0,999) is negatief en heel klein.)

Stel zelf een vraag

Ben je op zoek naar het antwoord op die ene vraag die je misschien al tijden achtervolgt?

/100